Рубрикатор
 
Города
Области
Документы
Статьи
О сайте
Почтовые индексы
Контакты

 
 

Рубидий

Рубидий – (Rubidium) Rb, химический элемент 1-й (Ia) группы Периодической системы. Щелочной элемент. Атомный номер 37, относительная атомная масса 85,4678. В природе встречается в виде смеси стабильного изотопа 85Rb (72,15%) и радиоактивного изотопа 87Rb (27,86%) с периодом полураспада 4,8.1010 лет. Искусственно получено еще 26 радиоактивных изотопов рубидия с массовыми числами от 75 до 102 и периодами полураспада от 37 мс (рубидий-102) до 86 дней (рубидий-83).

Атомный номер - 37

Атомная масса - 85,468

Плотность, кг/м³ - 1530

Температура плавления, °С - 38,9

Теплоемкость, кДж/(кг·°С) - 0,335

Электроотрицательность - 0,8

Ковалентный радиус, Å - 2,16

1-й ионизац. потенциал, эв - 4,18

Степень окисления +1.

Рубидий был открыт в 1861 немецкими учеными Робертом Бунзеном и Густавом Кирхгоффом и стал одним из первых элементов, открытых методом спектроскопии, который был изобретен Бунзеном и Кирхгоффом в 1859. Роберт Бунзен и Густав Кирхгоф добыли 150 кг лепидолита и получили несколько грамм солей рубидия для анализов, таким образом, они обнаружили новый элемент. Название элемента отражает цвет наиболее яркой линии в его спектре.

Распространение рубидия в природе

Металл РубидийРубидий - типичный рассеянный элемент. Несмотря на сравнительно высокое содержание в земной коре (кларк) 1,5·10-2% по массе, то есть больше, чем у Cu, Pb, Zn и многих других металлов, Рубидий не образует собственных минералов и преимущественно входит как изоморфная примесь в минералы калия и цезия (сильвин, карналлит, микроклин, Rb-мусковит и т. д.). Рубидий, подобно калию, содержится в кислых изверженных породах (гранитоидах) и особенно в пегматитах (до 1-3% Рубидий). В ультраосновных и основных породах Рубидий мало (2·10-4 и 4,5·10-3% соответственно). Воды морей и океанов содержат от 1,0·10-5 до 2,1·10-5% Рубидия. Соли Рубидия входят в состав вод многих минеральных источников.

Наиболее богаты Рубидием так называемых минералы-концентраторы: лепидолит, циннвалъдит, поллуцит.

Физические свойства Рубидия. Рубидий образует серебристо-белые мягкие кристаллы, имеющие на свежем срезе металлический блеск. Твердость по Бринеллю 0,2 Мн/м2 (0,02 кгс/мм2). Кристаллическая решетка Рубидия кубическая объемно-центрированная, а=5,70Å (0 °С). Атомный радиус 2,48 Å, радиус иона Rb+ 1,49 Å. Плотность 1,525 г/см3 (0 °С), tпл 38,9 °С, tкип 703 °С. Удельная теплоемкость 335,2 дж/(кг·К) [0,08 кал/(г·°С)], термический коэффициент линейного расширения 9,0·10-5 град-1 (0-38 °С), модуль упругости 2,4 Гн/м2 (240 кгс/мм2), удельное объемное электрическое сопротивление 11,29·10-6 ом·см (20 °С); Рубидий парамагнитен.

Химические свойства Рубидия. Атом Rb легко отдает единственный электрон внешней оболочки (ее конфигурация 5s1). Электроотрицательность Рубидий 0,89, первый потенциал ионизации 4,176 эв. Во всех химических соединениях Рубидий одновалентен (степень окисления +1). Химическая активность Рубидия очень высока. С кислородом соединяется бурно, давая пероксид Rb2O2 и надпероксид RbO2 (при недостатке кислорода образуется оксид Rb2O). С водой Рубидий реагирует со взрывом, причем выделяется водород и образуется раствор гидрооксида Рубидия, RbOH. По свойствам RbOH сильно напоминает гидрооксид калия КОН. Со многими неметаллами Рубидий соединяется непосредственно; бурно взаимодействует с большинством кислот. Почти все соли Рубидия хорошо растворимы в воде. Мало растворимы перхлорат RbClO4, хлороплатинат Rb2[PtCl5] и некоторые другие; они используются для аналитического определения Rb наряду с методом пламенной фотометрии, основанным на свойстве паров Rb и его соединений окрашивать пламя в ярко-красный цвет.

Получение Рубидия. Соли Rb получают как побочный продукт в производстве солей Li, Mg и К. Металлический Рубидий получают восстановлением в вакууме RbCl при 700-800 °С кальцием. Вследствие высокой реакционной способности Рубидий хранят в металлических сосудах под слоем парафинового масла или в запаянных стеклянных ампулах в инертной атмосфере.

Применение Рубидия. Применяют Рубидий главным образом в производстве катодов для фотоэлементов; добавляют также в газоразрядные аргоновые и неоновые трубки для усиления интенсивности свечения. Иногда Рубидий вводят в специальные сплавы (геттеры). Соли Рубидия используют как катализаторы в органических синтезе.

Месторождения рубидия в России

Для цезия и рубидия пегматиты и сейчас остаются единственным сырьевым источником, имеющим промышленное значение. Пегматитовые месторождения олова известны в Восточной Сибири России и расположены в докембрийских комплексах. Руды обычно комплексные, разрабатываются на олово, тантал, ниобий, скандий, рубидий, частично на вольфрам и висмут.

В поллуцитовых рудах месторождение Васин-Мыльк, расположенного в Ловозерском районе, содержатся крупные запасы рубидия и цезия. Важнейшим и крупнейшим источником рубидия, цезия, стронция и редких земель являются хибинские апатито-нефелиновые руды.

Лепидолит - минерал группы слюд, являющийся вторичным источником лития. Является одним из основных источников редких щелочных металлов, рубидия и цезия.

Госбалансом учитывается Верхнекамское месторождение калийно-магниевых солей, в котором рубидий является попутным полезным ископаемым. В солях рубидий связан с карналлитовой толщей. Содержание оксида рубидия в рудах колеблется от 0 до 120 г/т, среднее – 90 г/т. Массовая доля рубидия в руде и обогащённом карналлите составляет соответственно 0,0104% и 0,013%. Балансовые запасы оксида рубидия (Rb2О) ВКМКС учитываются по Палашерскому и Остальная Площадь участкам, забалансовые – по Усть-Яйвинскому участку.

Балансовые запасы рубидия, содержащегося в карналлитовых рудах Березниковского, Быгельско-Троицкого, Соликамского и Ново-Соликамского участков, утратили промышленное значение и были списаны. Причиной списания послужила экономическая нецелесообразность извлечения рубидия. Запасы рубидия не осваиваются из-за наличия более эффективных сырьевых источников (поллуцитовых концентратов), технология переработки которых более рентабельна.

Мировые запасы рубидия

Запасы и производство РубиидяСодержание рубидия в земной коре составляет 7,8·10−3%. Это примерно равно содержанию никеля, меди и цинка. По распространенности в земной коре рубидий находится примерно на 20-м месте, однако в природе он находится в рассеянном состоянии, рубидий — типичный рассеянный элемент. Собственные минералы рубидия неизвестны. Рубидий встречается вместе с другими щелочными элементами, он всегда сопутствует калию. Обнаружен в очень многих горных породах и минералах, найденных, в частности, в Северной Америке, Южной Африке и России, но его концентрация там крайне низка. Только лепидолиты содержат несколько больше рубидия, иногда 0,2 %, а изредка и до 1—3 % (в пересчете на Rb2О).

Соли рубидия растворены в воде морей, океанов и озер. Концентрация их и здесь очень невелика, в среднем порядка 100 мкг/л. В отдельных случаях содержание рубидия в воде выше: в Одесских лиманах оно оказалось равным 670 мкг/л, а в Каспийском море — 5700 мкг/л. Повышенное содержание рубидия обнаружено и в некоторых минеральных источниках Бразилии.

Из морской воды рубидий перешел в калийные соляные отложения, главным образом, в карналлиты. В страссфуртских и соликамских карналлитах содержание рубидия колеблется в пределах от 0,037 до 0,15 %. Минерал карналлит — сложное химическое соединение, образованное хлоридами калия и магния с водой; его формула KCl·MgCl2·6H2O. Рубидий дает соль аналогичного состава RbCl·MgCl2·6H2O, причём обе соли — калиевая и рубидиевая — имеют одинаковое строение и образуют непрерывный ряд твёрдых растворов, кристаллизуясь совместно. Карналлит хорошо растворим в воде, потому вскрытие минерала не составляет большого труда. Сейчас разработаны и описаны в литературе рациональные и экономичные методы извлечения рубидия из карналлита, попутно с другими элементами.

Получение рубидия

Далеко не все изотопы можно получать в атомных реакторах по ядерным реакциям с участием нейтронов. Многие радионуклиды синтезируют на ускорителях протонов и тяжелых ионов, например, на циклотронах. На циклотронах реализован комплекс по производству радиоактивных изотопов йода-123, фтора-18, углерода-11, азота-13, кислорода-15, рубидия-81, галлия-67, индия-111, таллия-201 и радиофармпрепаратов (РФП) на их основе.

Как известно, Кольский полуостров богат месторождениями редких металлов. В частности, здесь расположено Вороньетундровское месторождение - наиболее перспективное российское месторождение цезиевого минерала поллуцита. Кроме того, добываемый совместно с апатитовым, нефелиновый концентрат содержит достаточно высокую концентрацию рубидия (около 0.014 мас. %). Примерно 40 лет назад в связи с намечавшимся использованием редких щелочных металлов (прежде всего цезия) в ионных ракетных двигателях возникла необходимость разработки технологии и организации промышленного производства высокочистых рубидия и цезия. По инициативе академика И.В.Тананаева необходимые исследования были поставлены в Институте химии и технологии редких элементов и минерального сырья Кольского филиала Академии Наук.

Принципиально возможны две стратегии получения высокочистых металлов:

- получение высокочистых соединений из различных видов природного сырья и их дальнейшая переработка на высокочистые металлы;

- получение черновых металлов (сплавов) с их последующим разделением на индивидуальные металлы и их доочисткой.

Поллуцит представляет собой гидратированный алюмосиликат цезия, содержащий до 36,77 и 0,72 мас. % цезия и рубидия соответственно. Цеолитная структура поллуцита определяет наличие в нем воды, которая не может быть удалена полностью даже при длительной высокотемпературной (800-850о) вакуумной прокалке. Сопутствующими минералами, как правило, являются другие алюмосиликаты (прежде всего анальцим), лепидолит, танталит, другие минералы. Поллуцитсодержащие руды часто образуют крупные рудные тела, легко обогащаемые методом ручной разборки с получением богатых концентратов. Содержание в них оксида цезия составляет ≥ 26, оксида рубидия до 1,7 мас. % (повышенное содержание рубидия связано с присутствием в концентрате лепидолита). Однако для основной части Вороньетундровского и других месторождений России характерны мелко вкрапленные руды, для которых разработаны методы механического и химического обогащения. При химическом обогащении цезий извлекается не в виде поллуцита, а в виде солевых концентратов. Для переработки поллуцита на химические соединения предложен ряд технологий, позволяющих получать различные соединения или концентраты на их основе (нитраты, сульфаты, хлориды, карбонаты и др.). Производство концентратов при химической переработке сырья значительно дешевле, чем товарных солей.

Рубидий является рассеянным элементом. Его выделяют в виде хлоридных, нитратных, сульфатных, карбонатных концентратов при химической переработке различных видов минерального сырья. В частности, разработаны методы получения карбонатных концентратов рубидия из нефелина, хлоридных концентратов рубидия из карналлита, опытно-промышленное производство которых осуществлялось на Волховском алюминиевом заводе, Пикалевском глиноземном комбинате и Березниковском титаномагниевом заводе.

Нитрат цезия получали при переработке поллуцита на Новосибирском заводе химических реактивов, нитратные и карбонатные концентраты рубидия и цезия - попутно при переработке сподумена на Красноярском химико-металлургическом заводе.

Термодинамический анализ возможных реакций показал, что процессы характеризуются малыми величинами изменения энергии Гиббса, и, как следствие, в них не может быть получено прямое высокое извлечение целевых компонентов. Однако оно было достигнуто за счет смещения равновесия, достигавшегося путем непрерывной отгонки из зоны реакции более легко кипящего целевого компонента (рубидия, цезия). При восстановлении концентратов с относительно низким содержанием рубидия или цезия концентрацию целевого компонента в черновых сплавах удавалось значительно повысить уже на стадии восстановления. Так, при восстановлении натрием поташных концентратов, содержавших около (мас.) 10.7 % рубидия, были полученный рубидий- калиевый сплав содержал около 50 % рубидия, а при восстановлении калием - свыше 60 %.

Термодинамические расчеты показали, что восстановление карбонатов рубидия и цезия натрием может протекать параллельно по двум реакциям:

(Rb, Cs)2CO3 + 2Na → 2(Rb, Cs) + Na2CO3 и

(Rb, Cs)2CO3 + 6Na → 2(Rb, Cs) + 3Na2O+С

Данная технология получения высокочистых гидроксидов рубидия и цезия взаимодействием металлов с высокочистой водой (протиевой или дейтерированной), позволила организовать производство многих особо чистых соединений, в первую очередь фосфатов и галогенидов. Исследования позволили создать промышленное производство высокочистых рубидия и цезия из сырья Кольского полуострова.

Применение рубидия

Хотя в ряде областей применения рубидий уступает цезию, этот редкий щелочной металл играет важную роль в современных технологиях. Можно отметить следующие основные области применения рубидия: катализ, электронная промышленность, специальная оптика, атомная промышленность, медицина.

Рубидий используется не только в чистом виде, но и в виде ряда сплавов и химических соединений. Рубидий имеет хорошую сырьевую базу, более благоприятную, чем для цезия. Область применения рубидия в связи с ростом его доступности расширяется.

Изотоп рубидий-86 широко используется в гамма-дефектоскопии, измерительной технике, а также при стерилизации лекарств и пищевых продуктов. Рубидий и его сплавы с цезием — это весьма перспективный теплоноситель и рабочая среда для высокотемпературных турбоагрегатов (в этой связи рубидий и цезий в последние годы приобрели важное значение, и чрезвычайная дороговизна металлов уходит на второй план по отношению к возможностям резко увеличить КПД турбоагрегатов, а значит и снизить расходы топлива и загрязнение окружающей среды). Применяемые наиболее широко в качестве теплоносителей системы на основе рубидия — это тройные сплавы:натрий-калий-рубидий, и натрий-рубидий-цезий.

В катализе рубидий используется как в органическом, так и неорганическом синтезе. Каталитическая активность рубидия используется в основном для переработки нефти на ряд важных продуктов. Ацетат рубидия, например, используется для синтеза метанола и целого ряда высших спиртов из водяного газа, что актуально в связи с подземной газификацией угля и в производстве искусственного жидкого топлива для автомобилей и реактивного топлива. Ряд сплавов рубидия с теллуром обладают более высокой чувствительностью в ультрафиолетовой области спектра, чем соединения цезия, и в связи с этим он способен в этом случае составить конкуренцию цезию как материал для фотопреобразователей. В составе специальных смазочных композиций (сплавов), рубидий применяется как высокоэффективная смазка в вакууме (ракетная и космическая техника).

Гидроксид рубидия применяется для приготовления электролита для низкотемпературных химических источников тока, а также в качестве добавки к раствору гидроксида калия для улучшения его работоспособности при низких температурах и повышения электропроводности электролита. В гидридных топливных элементах находит применение металлический рубидий.

Хлорид рубидия в сплаве с хлоридом меди находит применение для измерения высоких температур (до 400 °C).

Пары рубидия используются как рабочее тело в лазерах, в частности, в рубидиевых атомных часах.

Хлорид рубидия применяется в топливных элементах в качестве электролита, то же можно сказать и о гидроксиде рубидия, который очень эффективен как электролит в топливных элементах, использующих прямое окисление угля.

Рубидий применяют в фотоэлементах (у него очень мала работа выхода электрона). Rb2CO3 используется в качестве катализатор.

 
http://www.magicwedding.ru/ свадебные костюмы для жениха.

 Copyright © ProTown.ru 2008-2015
 При перепечатке ссылка на сайт обязательна. Связь с администрацией сайта.